Model-Free Least-Squares Policy Iteration
نویسندگان
چکیده
We propose a new approach to reinforcement learning which combines least squares function approximation with policy iteration. Our method is model-free and completely off policy. We are motivated by the least squares temporal difference learning algorithm (LSTD), which is known for its efficient use of sample experiences compared to pure temporal difference algorithms. LSTD is ideal for prediction problems, however it heretofore has not had a straightforward application to control problems. Moreover, approximations learned by LSTD are strongly influenced by the visitation distribution over states. Our new algorithm, Least Squares Policy Iteration (LSPI) addresses these issues. The result is an off-policy method which can use (or reuse) data collected from any source. We have tested LSPI on several problems, including a bicycle simulator in which it learns to guide the bicycle to a goal efficiently by merely observing a relatively small number of completely random trials.
منابع مشابه
Least-Squares Methods in Reinforcement Learning for Control
Least-squares methods have been successfully used for prediction problems in the context of reinforcement learning, but little has been done in extending these methods to control problems. This paper presents an overview of our research efforts in using least-squares techniques for control. In our early attempts, we considered a direct extension of the Least-Squares Temporal Difference (LSTD) a...
متن کاملLeast-Squares Policy Iteration
We propose a new approach to reinforcement learning for control problems which combines value-function approximation with linear architectures and approximate policy iteration. This new approach is motivated by the least-squares temporal-difference learning algorithm (LSTD) for prediction problems, which is known for its efficient use of sample experiences compared to pure temporal-difference a...
متن کاملLeast-Squares Policy Iteration: Bias-Variance Trade-off in Control Problems
In the context of large space MDPs with linear value function approximation, we introduce a new approximate version of λ-Policy Iteration (Bertsekas & Ioffe, 1996), a method that generalizes Value Iteration and Policy Iteration with a parameter λ ∈ (0, 1). Our approach, called Least-Squares λ Policy Iteration, generalizes LSPI (Lagoudakis & Parr, 2003) which makes efficient use of training samp...
متن کاملApplying Policy Iteration for Training Recurrent Neural Networks
Recurrent neural networks are often used for learning time-series data. Based on a few assumptions we model this learning task as a minimization problem of a nonlinear least-squares cost function. The special structure of the cost function allows us to build a connection to reinforcement learning. We exploit this connection and derive a convergent, policy iteration-based algorithm. Furthermore,...
متن کاملApproximate Policy Iteration with Linear Action Models
In this paper we consider the problem of finding a good policy given some batch data. We propose a new approach, LAMAPI, that first builds a so-called linear action model (LAM) from the data and then uses the learned model and the collected data in approximate policy iteration (API) to find a good policy. A natural choice for the policy evaluation step in this algorithm is to use least-squares ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001